Dual Peptide Conjugation Strategy for Improved Cellular Uptake and Mitochondria Targeting

نویسندگان

  • Ran Lin
  • Pengcheng Zhang
  • Andrew. G. Cheetham
  • Jeremy Walston
  • Peter Abadir
  • Honggang Cui
چکیده

Mitochondria are critical regulators of cellular function and survival. Delivery of therapeutic and diagnostic agents into mitochondria is a challenging task in modern pharmacology because the molecule to be delivered needs to first overcome the cell membrane barrier and then be able to actively target the intracellular organelle. Current strategy of conjugating either a cell penetrating peptide (CPP) or a subcellular targeting sequence to the molecule of interest only has limited success. We report here a dual peptide conjugation strategy to achieve effective delivery of a non-membrane-penetrating dye 5-carboxyfluorescein (5-FAM) into mitochondria through the incorporation of both a mitochondrial targeting sequence (MTS) and a CPP into one conjugated molecule. Notably, circular dichroism studies reveal that the combined use of α-helix and PPII-like secondary structures has an unexpected, synergistic contribution to the internalization of the conjugate. Our results suggest that although the use of positively charged MTS peptide allows for improved targeting of mitochondria, with MTS alone it showed poor cellular uptake. With further covalent linkage of the MTS-5-FAM conjugate to a CPP sequence (R8), the dually conjugated molecule was found to show both improved cellular uptake and effective mitochondria targeting. We believe these results offer important insight into the rational design of peptide conjugates for intracellular delivery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual-Targeting Pro-apoptotic Peptide for Programmed Cancer Cell Death via Specific Mitochondria Damage

Mitochondria are vital organelles to eukaryotic cells. Damage to mitochondria will cause irreversible cell death or apoptosis. In this report, we aim at programmed cancer cell death via specific mitochondrial damage. Herein, a functionalized pro-apoptotic peptide demonstrates a dual-targeting capability using folic acid (FA) (targeting agent I) and triphenylphosphonium (TPP) cation (targeting a...

متن کامل

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

SRL-coated PAMAM dendrimer nano-carrier for targeted gene delivery to the glioma cells and competitive inhibition by lactoferrin

Glioma, as a primary tumor of central nervous system, is the main cause of death in patients with brain cancer. Therefore, development of an efficient strategy for treatment of glioma is worthy. The aim of the current study was to develop a SRL peptide-coated dendrimer as a novel dual gene delivery system for targeting the LRP receptor, an up-regulated gene in both BBB and glioma cells. To perf...

متن کامل

Conjugation of vitamin E analog α-TOS to Pt(IV) complexes for dual-targeting anticancer therapy.

We report two platinum(IV) complexes conjugated with a vitamin E analog, α-tocopherol succinate (α-TOS). One of the conjugates displays the activity of both cisplatin and α-TOS in cancer cells, causing damage to DNA and mitochondria simultaneously. Accordingly, it serves as a promising dual-targeting anticancer agent.

متن کامل

On-demand cellular uptake of cysteine conjugated gadolinium based mesoporous silica nanoparticle with breast cancer-cells

Design, synthesis, and conjugation of mesoporous silica nanoparticles (MSNs) with biomolecules is a matter of growing interest to enhance selective uptake of contrast agents like gadolinium (Gd3+) by cancer cells. Here, by targeting xc-cystine/glutamate antiporter system in breast cancer cells, conjugation of MSN-Gd3+ with cysteine is used to enhance cancer cellular uptake of Gd3+. Reactions de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015